2012年3月30日金曜日

長期増強 - Wikipedia


神経科学の分野において、長期増強(ちょうきぞうきょう、英: LTP : Long-term potentiation)とは、神経細胞を同時刺激することにより 2 つの神経細胞間の信号伝達が持続的に向上する現象のことである[2]。神経細胞はシナプス結合を介して信号伝達しており、記憶はこのシナプスに貯えられていると信じられているので[3]、長期増強は学習と記憶の根底にある主要な細胞学的メカニズムの 1 つであると広く考えられている[2]

長期増強と長期記憶には多くの共通点が存在するため、長期増強は学習の細胞学的メカニズムの有力な候補となっている。例えば、長期増強と長期記憶はともに、急速に開始され、新しいタンパク質の生合成に依存していて、連合性をもち、何か月もの持続が可能である[2]。長期増強は、すべての動物に見られる比較的単純な古典的条件づけから、ヒトに見られるより複雑な高次の認知までの、様々な種類の学習を説明する現象である可能性がある[2]

シナプス伝達強度を増加させることで、長期増強はシナプス前細胞とシナプス後細胞がシナプスを介して信号伝達する能力を向上させる。長期増強は脳の領域やその動物の年齢、種類などにより異なる複数のメカニズムで成り立っていることなどにより、その正確なメカニズムは完全に分かっているわけではない。現在最もよく分かっている長期増強の形式は、シナプス前細胞から受け取られるシグナルに対するシナプス後細胞の感受性の増加によって、信号伝達が向上するものである[4]。このシグナルは神経伝達物質の形で、シナプス後細胞の膜表面にある神経伝達物質受容体に受け取られる。長期増強は多くの場合、シナプス後細胞の表面に既に存在する受容体の活動性を増加させるか、受容体の数を増加させることにより、シナプス後細胞の応答性を増加させる[4]

長期増強は 1966 年に初めてテリエ・レモ (Terje Lomo) によりウサギの 海馬 (脳)で発見され、それ以降多くの研究の対象となった。現在の長期増強の研究の大部分はこの現象の基礎生物学的理解に関するものだが、長期増強と行動学的学習の因果関係に関するものも存在する。さらに他にも、学習と記憶を向上させるために長期増強を強化するような薬理学的手法などの開発も行われている。また、長期増強は臨床研究の対象にもなっている。例えば、アルツハイマー型認知症や薬物依存に関する研究がそれにあたる。

[編集] 学習の初期理論

19 世紀の終わりに、科学者の間では成人の脳にある (約 1000 億[5]の)脳細胞の数が年齢に従って大きく増えることはないことが一般的に知られており、記憶は新しい神経細胞が生まれることにより生じるわけではないと考えられていた[6]。このことから、新しい神経細胞の形成を仮定することなしに記憶の形成を説明する理論が求められていた。

スペイン人の神経解剖学者のサンティアゴ・ラモン・イ・カハールは、新しい神経細胞の形成を仮定せずに学習のメカニズムを提唱した最初の人物である。1894 年のクルーニアン講義において彼は、既に存在する神経細胞間の信号伝達効率が向上することにより、神経細胞の結合が強化されることで記憶が生じると提唱した[6]。ドナルド・ヘッブにより 1949 年に提唱されたヘッブの法則はカハールのアイディアに応えるものであり、神経細胞は新たな結合の形成や代謝の変化などにより、その信号伝達能力が向上するとした。

これらの記憶形成の理論は現在では確立しているものの、当時は注目されることは少なかった。19 世紀後半から 20 世紀前半の神経科学者と心理学者間で、動物の学習の生物学的基盤を解明するのに必要な電気生理学手法がまだ確立していなかったためである。このような手法は 20 世紀後半に成立し、ちょうどその時期に長期増強も発見されたのであった。

[編集] 長期増強の発見

長期増強はテリエ・レモ (Terje Lomo) により 1966 年にノルウェーのオスロにあるペア・アンダーソン (Per Andersen) の研究室で初めて発見された[7]。レモは麻酔下のウサギの短期記憶における海馬の役割に関する電気生理学実験を行っている所であった。

海馬の有孔質路と歯状回の 2 つの部分の神経結合を取り出し、レモは有孔質路の刺激によって生じる歯状回の電気生理学的変化を観察した。レモの予想通り、シナプス前線維である有孔質路線維の単一パルス刺激を行うと、歯状回のシナプス後細胞集団に興奮性シナプス後電位 (EPSP : excitatory postsynaptic potential) が起きた。しかしレモが予想もしなかったことに、シナプス後線維に高頻度刺激を行うと、上で示したようなシナプス後細胞集団の単一パルス刺激に対する応答が長期に渡って向上した。このような高頻度刺激を行った後の、単一パルス刺激に対するシナプス後細胞集団の興奮性シナプス後電位は強く、持続性のあるものであった。高頻度刺激によってシナプス後細胞集団の単一パルス刺激に対する応答性が長期に渡って向上するこの現象は、初めは "long-lasting potentiation" と呼ばれていた[8][9]

アンダーソンの研究室に 1968 年に加わったティモシー・ブリス (Timothy Bliss)[7]は、レモと共同で 1973 年にウサギの海馬における "long-lasting potentiation" の特徴を初めて述べた論文を発表した[8]。さらに、ブリスとトニー・ガードナー・メドウィン (Tony Gardner-Medwin) は覚醒時の動物においてブリスとレモが発表したのと同様な "long-lasting potentiation" が起きるとする論文を発表した[9]。1975 年に、ダグラス (Douglas) とゴダール (Goddard) はそれまで "long-lasting potentiation" と呼ばれていた現象を『長期増強 ("long-term potentiation") 』と呼ぶことを提唱した[10][11]アンダーソンは "long-term potentiation" の頭字語である "LTP" が発音しやすいことから、"long-term potentiation" という呼称を論文の著者達に勧めたとされている[12]

[編集] 長期増強の種類

ウサギの海馬における最初の発見以来、長期増強は大脳皮質、小脳、扁桃体[13]などの様々な神経構造で見つかっている。長期増強の代表的な研究者の 1 人であるロバート・マレンカ (Robert Malenka) は長期増強は哺乳類の持つ全ての興奮性シナプスで起きているとしている[4]

異なる脳領域では、長期増強の形も異なっている。神経細胞間で起きる長期増強の種類は多くの要素に依存している。その要素の 1 つとして、長期増強が観察される時の生物の年齢がある。例えば、未成熟な海馬の長期増強の分子メカニズムは大人の海馬のそれとは異なっている[14]。また、特定の細胞が用いる信号伝達経路によっても異なる種類の長期増強が起きている。例えば、ある海馬の長期増強にはNMDA型グルタミン酸受容体によるもの、代謝調節型グルタミン酸受容体 (mGluR : metabotropic glutamate receptor) によるもの、さらにまったく別の受容体によるものがある[4]。長期増強に寄与する様々な種類の信号伝達経路と、この様々な経路の脳における幅広い分布は、神経細胞間で起きる長期増強の種類が、長期増強を観察する脳の部位によって一部異なっていることの理由になっている。例えば、海馬にあるシェファー側枝経路で起きる長期増強は NMDA 型グルタミン酸受容体依存性である一方、苔状線維経路における長期増強はNMDA 型グルタミン酸受容体非依存性である[15]

導入が容易であることから、海馬の CA1 における長期増強は哺乳類の長期増強研究の基本的なものになっている。特に大人の海馬の CA1 における NMDA 型グルタミン酸受容体依存性長期増強は最も広く研究されている長期増強である[4]。したがって本記事でもこの種の長期増強について主に解説する。

[編集] 長期増強の特性

NMDA 型グルタミン酸受容体依存性長期増強は主に入力依存性、連合性、共同性の 3 つの特性を示すとされている。

入力特異性
一度誘導されたら、1 つのシナプスにおける長期増強は他のシナプスに広がることはない。つまり長期増強は入力特異的である。長期増強は連合性と共同性のみによって伝播する。しかし、短い距離における長期増強の入力特異性は完全ではない。
連合性
連合性は、1 つのシナプスにおける刺激が長期増強を引き起こすのに十分な強さではなかったとしても、別のシナプスからの強い刺激が同時に起きることによって長期増強が起きるという特性である。
共同性
長期増強は 1 つのシナプス経路の強いテタヌス刺激か、複数の経路の弱い刺激が共同して行われることにより起きる。弱い刺激が 1 つのシナプスから起きた場合、生じる脱分極は長期増強を引き起こすのには不十分である。しかし、弱い刺激が複数のシナプスからシナプス後膜の一部に集中して起きた場合、個々の脱分極が集まって長期増強を引き起こすのに十分な脱分極が起きる。 後述するシナプティック・タギング (synaptic tagging) は連合性と共同性の根底にある共通したメカニズムであるとされている。

特に、ブルース・マクノートン (Bruce McNaughton) は連合性と共同性の違いは語義の問題に過ぎないとしている[16]

[編集] 長期増強のメカニズム

長期増強は神経系のいたる所で様々なメカニズムによって起きる。したがって、多くの種類の長期増強の全てを統一して説明するような単一のメカニズムというものは存在しない。しかし研究のために、長期増強は一般的に短期増強 (STP : short-term potentiation) 、前期長期増強 (early LTP)、後期長期増強 (late LTP) の、順番に起きる 3 種類の段階に分けられる[17]。短期増強についてはまだよく分かっていないため[17]、ここでは解説しない。

長期増強のそれぞれの段階は、その段階を指令するメディエーター (mediator) と呼ばれる小分子によって支配されている[4]。これらの分子の中には細胞外の出来事に応答するタンパク質受容体や、細胞間の化学反応を実行する酵素、1 つの段階から次の段階への進行を行うシグナリング分子などがある。これらのメディエーターに加え、メディエーターと相互作用して、長期増強を最終的な形へと調整する調節分子 (modulator molecule) が存在する。調節分子に関しては後で解説する。

前期長期増強 (E-LTP) と後期長期増強 (L-LTP) はさらに誘導 (induction)、維持 (maintenance)、発現 (expression) の 3 種類の出来事に分けられる。まず誘導とは、長期増強のその段階が始まる引き金となる短期間のシグナルの処理のことを示す。次に維持とは、誘導に対する応答として起きる持続的な生化学的変化に相当する。最後に発現とは、維持シグナルの活性化の結果として起きる長期持続性の細胞変化のことを示す[17]。したがって長期増強のメカニズムについて、前期長期増強 (E-LTP) と後期長期増強 (L-LTP) の誘導、維持、発現におけるメディエーターの観点から解説を行う。

[編集] 前期長期増強

[編集] 誘導

前期長期増強の誘導は、シナプス後細胞内のカルシウム濃度が閾値を超えたときに起きる[18]。多くの種類の長期増強において、カルシウム濃度変化にはNMDA型グルタミン酸受容体が必要とされるので、これらの種類の長期増強は NMDA 型グルタミン酸受容体依存性であると考えられる[18]。NMDA 型グルタミン酸受容体依存性長期増強のは 2 つの神経細胞間の結合に対して高頻度刺激を数回行うことで実験的に誘導することが出来る[19]。通常のシナプス伝達を理解することにより、どのようにしてこのテタヌス刺激により前期長期増強の誘導が起きるのかが説明できる。

化学シナプスは、神経系のいたる所に存在する神経細胞間の機能的結合である。一般的なシナプスでは、情報はシナプス前細胞からシナプス伝達と呼ばれる過程を経てシナプス後細胞へと伝えられる。実験操作において、シナプス前細胞にパルス刺激を行うと、神経伝達物質 (例えば、グルタミン酸) がシナプス後膜へと放出される。放出されたグルタミン酸はシナプス後膜に埋め込まれているAMPA型グルタミン酸受容体 (AMPAR : AMPA receptor) に結合する。AMPA 型グルタミン酸受容体は脳にある主な興奮性受容体の 1 つで、その時々の急速な興奮性活動を引き起こす[20]グルタミン酸がAMPA型グルタミン酸受容体に結合することによりシナプス後細胞へナトリウムイオンが流入し、興奮性シナプス後電位 (EPSP : excitatory postsynaptic potential) と呼ばれる短時間の脱分極が起きる。

この脱分極の強さは、前期長期増強がシナプス後細胞で誘導されるか否かを決定する。1 つの刺激では前期長期増強を誘導するのに十分な脱分極を起こせなくても、高頻度の反復した刺激によって興奮性シナプス後電位の時間的加重 (EPSP summation) を起こすことで漸次的に強い脱分極を起こさせることができる。興奮性シナプス後電位の加重とは、前の興奮性シナプス後電位による脱分極が減少しきる前に、次の興奮性シナプス後電位がシナプス後細胞に到着することにより、さらに強い脱分極を起こす現象である。NMDA 型グルタミン酸受容体依存性長期増強を示すシナプスでは、十分な脱分極によりNMDA型グルタミン酸受容体 (NMDAR : NMDA receptor) が解放され、受容体にグルタミン酸が結合した際にカルシウムの細胞内への流入が起きる。シナプス後膜にあるほとんどのNMDA型グルタミン酸受容体は静止膜電位時にマグネシウムイオンによってブロックされ、シナプス後細胞へのカルシウムの流入が阻害されている。興奮性シナプス後電位の加重による十分な脱分極により、NMDA型グルタミン酸受容体がマグネシウムのブロックから解放され、カルシウムの流入が生じることとなる。細胞内カルシウム濃度の急激な上昇は、前期長期増強の誘導を仲介する酵素の短期間の活性化の引き金となる。中でも特に重要なのはカルシウム/カルモジュリン依存性プロテインキナーゼ II (CaMKII : calcium/calmodulin-dependent protein kinase II) や プロテインキナーゼ C (PKC : protein kinase C) などのいくつかのプロテインキナーゼである[17]。それ以外の酵素として、プロテインキナーゼ A (PKA : protein kinase A) や 分裂促進因子活性化タンパク質キナーゼ (MAPK : mitogen-activated protein kinase) も前期長期増強の誘導に寄与している[17]

[編集] 維持

前期長期増強の誘導の結果、カルシウム/カルモジュリン依存性プロテインキナーゼ II とプロテインキナーゼ C の一時的な活性化が起きる。前期長期増強の維持ではそれらの酵素の持続的な活性化が行われる。この段階では、カルシウム非依存性のプロテインキナーゼ Mζ (PKMz : Protein kinase Mζ)が自律的に活性化する。その結果、前期長期増強の発現に必要なリン酸化が起きる[17]

2012年3月28日水曜日

エレキギター初心者のための弾き方講座 : 運指練習(1)


エレキギターの練習に運指練習というのがあります。
これから何回かに分けて簡単な運指練習を紹介したいと思います。

運指練習というとあまり音楽的ではなく
退屈な練習だと感じてる方も多いかもしれないですが
基礎力のアップやウォーミングアップ
などには効果的なので是非毎日の練習に取り入れて
見て下さい。(→エレキギターの練習法の記事へ)

一番ポピュラーなのはこんなフレーズです。